

Over Voltage and Adjustable Current Protector with Fault Report

Description

SA8204 can disconnect the systems from its output pin (OUT) in case wrong input operating conditions are detected. The system is positive overvoltage protected up to 36V.

The internal over voltage thresholds (OVLO) is 6.1V and internal over current thresholds (OCP) is adjustable by an external resistor from 100mA to 2.5A.

SA8204 also has ENB function to turn on or off OUT, It also integrate internal over temperature protect (OTSD) function and it can monitor chip temperature to protect the device.

The device is packaged in advanced full-Green Packaging.

Features

Typical Ron: 110mΩ

VIN Operating Range: 2.5 to 36V
Internal Overvoltage Lockout: 6.1V

Adjustable Current Limited

OVP Response time: < 500ns</p>

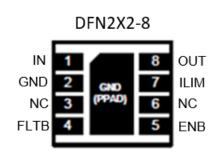
Output Discharge

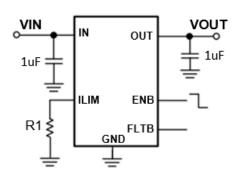
Startup Debounce Time: 8ms

Output Power on time: 8ms

Internal OTSD Protection

ENB Pin Control


Fault report function


DFN2X2-8 Package

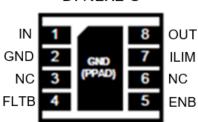
Applications

- GPS
- MID
- SLR Digital Cameras
- Industrial Handheld and Enterprise Equipment

SA8204 Package & Simplified Schematic

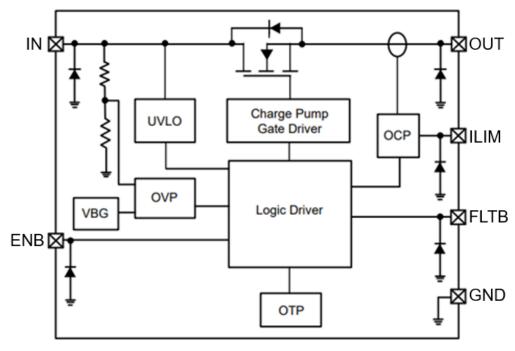
Device Information

Part No.	Package	Quality	Operation Temp.
SA8204	DFN2X2-8	3000	-40~85 °C


www.sytatek.com - 1 - V0.1

Over Voltage and Adjustable Current Protector with Fault Report

Pin Descriptions



NAME	DFN2X2-8	TYPE	DESCRIPTION	
IN	1	Р	Input pin, connect to AC adaptor or VBUS. A 1uF low ESR ceramic capacitor or larger must be connected as close as to this pin. It is recommended to use 50V capacitor or according to application.	
GND	2	Р	Power ground	
NC	3,6	NC	No Connection	
FLTB	4	0	Open drain output, FLTB will trigger at OVP, OCP and OTSD status	
ENB	5	I	Chip enable pin, Active Low	
ILIM	7	ı	Current Program pin, Connection a resistor to ground	
OUT	8	0	Output pin, Connect to load.	

(1) Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output

Function Block Diagram

www.sytatek.com - 2 - V0.1

Over Voltage and Adjustable Current Protector with Fault Report

Absolute Maximum Ratings (T_A=25°C)

	Parameter	Min.	Unit	
Input voltage (IN pin)	VIN	-0.3	36	V
Output voltage (OUT pin)	VOUT	-0.3	-0.3 7.0	
Power dissipation	P _D		0.5	W
Thermal resistance	SOT23-6 θ _{JA}	260		°C/W
	DFN2X2-8 θ _{JA}	50		°C/W
ESD(HBM)		2.0		kV
Operation temp.	TJ	-40	150	°C
Storage temp.	T _{stg}	-65	150	°C

Recommended operating conditions (T_A=25°C)

Р	Parameter Min. Max.		Unit	
Input voltage (IN pin)	VIN	3.0	28.0	V
Output voltage (OUT pin)	VOUT	0	5.5	V
Output Contiguous Current	Гоит	0	1.5*	Α

Notes: * Using 25mm² FR4 Signal layer PCB (1 oz) under VM=5.0V test.

www.sytatek.com - 3 - V0.1

Over Voltage and Adjustable Current Protector with Fault Report

Electrical Characteristics (V_{IN}=5V, T_A=25 °C, R_{LOAD}=20)

over operating free-air temperature range (unless otherwise noted)

Parameter		Test Condition	Min.	Тур.	Max.	Unit
DC characteristics and Powe	r-ON-Reset					
VIN operating voltage	V _{IN}		2.5		36	V
VIN operating supply current	I _{VIN_ON}	V _{IN} =5V		160	250	uA
VIN-to-VOUT ON resistance	Ron	V _{IN} =5V, I _{OUT} =1.0A		110		mΩ
Output discharge resistance	R _{DIS}			500		Ω
VIN undervoltage lockout	$V_{UVLO_{R}}$	VIN rising		2.20		V
VIIV undervoltage lockout	$V_{UVLO_{F}}$	VIN falling		1.90		V
Output power on time	T _{ON}	VIN = 0 -> 5V to output ON		8		ms
Input Over-Voltage Protection	on (OVP)		-			
VIN OVLO Protection	$V_{\text{OVLO}_{R}}$		5.8	6.1	6.4	V
Input low level voltage	V _{OVLO_HYS}			150		mV
OVP active time	T _{OVP}	VIN = 5 -> 10V			500	ns
OVP recovery time	T _{ON_OVP}	VIN = 10 -> 5V to output ON		8		ms
Input Over-Current-Protection	on (OCP)					
		R _{ILIM} =40.2k		2.00		Α
OCP threshold	I _{OCP}	R _{ILIM} =51k		1.55		Α
OCF tillesiloid		R _{ILIM} =140k		0.50		Α
		R _{ILIM} =422k		0.10		Α
OCP Active time	T _{OCP}			200		us
ILIM Voltage	V _{ILIM}			0.8		V
Over-Temperature-Protection	on (OTP)					
OTP threshold	T _{OTP}			165		°C
OTP threshold hysteresis	T _{OTP_HYS}			40		°C

www.sytatek.com - 4 - V0.1

Over Voltage and Adjustable Current Protector with Fault Report

Functional Description

The OVP switch with overvoltage protection feature a low $120m\Omega$ (typical) on-resistance (RON) internal FET and protect low-voltage systems against voltage faults up to 36VDC. If the input voltage (VIN) exceeds 6.1V, or input current exceeds 2.5A, the internal FET is quickly turned off to prevent damage to the protected downstream components.

The internal FET turns off when the junction temperature exceeds +165°C (TYP.). The device exits thermal shutdown after the junction temperature cools by 40°C (TYP.).

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor1µF or lager must be placed between the VIN and GND pins.

Output Capacitor

A1µF or lager capacitor should be placed between the OUT and GND pins.

Under-voltage Lockout (UVLO)

The under-voltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turn on threshold. Built-in hysteresis prevents unwanted on and off cycling because of input voltage droop during turn on.

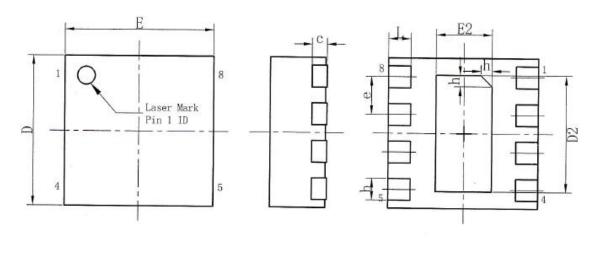
Over Current Protection (OCP)

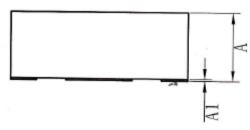
If the load current rises to the OCP threshold, the device will cut off the output voltage. It takes 8ms after power on for OCP begins to detect. After Power Good, the OCP active time is dozens to hundreds microseconds. SA8204 will latch OUT to OFF status when OCP is trigger and need to reenable ENB or power up to recovery normal operation.

The OCP threshold is calculated by the equation:

 I_{OUT} = 85/ R_{ILIM} - 100mA (current in A, resistance in k Ω).

FALUT Condition


FLTB is open drain output and need to connection a resistor to VBAT. when the input pass FET has been turned off due to input over-voltage or overload current protection, an over-temperature condition, the FLTB will pull down. FLTB is high impedance during normal operation.


www.sytatek.com - 5 - V0.1

Over Voltage and Adjustable Current Protector with Fault Report

Package DFN2X2

标注	最小(mm)	标准(mm)	最大(mm)	标注	最小(mm)	标准(mm)	最大(mm)
A	0.70	0.75	0.80	е	0, 50BSC		
A1	0.00	0.02	0.05	Е	1. 95	2.00	2, 05
b	0, 18	0. 29	0.30	E2	0.70	0.75	0.80
С	0. 20REF			L	0. 25	0.30	0.35
D	1.95	2.00	2.05	h	0.10	0.15	0. 20
D2	1.50	1.55	1.60		L/F载体尺寸 (mm):1.00*1.80		

www.sytatek.com - 6 - V0.1

Over Voltage and Adjustable Current Protector with Fault Report

IMPORTANT NOTICE

Syta Technology Corporation (Sytatek) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

Sytatek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Sytatek product. No circuit patent licenses are implied.

www.sytatek.com - 7 - V0.1